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Abstract

An algorithm is presented which solves the multi-dimensional advection-diffusion

equation on complex shapes to 2rid-order accuracy and is asymptotically stable in time.

This bounded-error result is achieved by constructing, on a rectangular grid, a differ-

entiation matrix whose symmetric part is negative definite. The differentiation matrix

accounts for the Dirichlet boundary condition by imposing penalty like terms.

Numerical examples in 2-D show that the method is effective even where standard

schemes, stable by traditional definitions, fall. It gives accurate, non oscillatory results

even when boundary layers are not resolved.
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1 Introduction

Currently there is a growing interest in long time integration for solving problems in

areas such as fluid-mechanics, aero-acoustics, electro-magnetics, material-science, and others.

Clearly, it will be very advantageous if one could formulate the spatial discretization in a way

which guarantees that, for the semi-discrete formulation, the solution-error norm is bounded

by the norm of the truncation error. Most, if not all, existing algorithms rely on stability

for convergence. However, even stable schemes, which at a given time converge with mesh

refinement may have a temporally growing error, [1]. This is particularly true for hyperbolic

operators.

This paper considers 2hal-order accurate approximations to model linear advection-diffusion

equations in one and more dimensions, on domains which may be irregular. By an irregular

domain, we mean a body whose boundary points do not necessarily coincide with nodes of

a rectangular mesh.

In section 2 we treat a model "shock-layer" equation (linearized Burger's equation),

1

ut+au_=_u_; t_0, 0<x< 1; R>> 1.

We develop there the theory for the one dimensional semi-discrete system resulting from the

spatial differentiation used in the finite difference algorithm. Energy methods are used in

conjunction with "SAT" type terms (see [1], [2]), in order to find boundary treatment and

"artificial-viscosity-like terms", that preserve the accuracy of the scheme while constrain-

ing an energy norm of the error to be temporally bounded for all t > 0 by a "constant"



proportional to the norm of the truncation error.

In section3 it is shownhow the methodologydevelopedin section2 is usedasa building

block for the multi-dimensional algorithm, evenfor irregular shapes.

Section 4 presents numerical results. Section4.1 dealswith the steadystate solution

to the "shock-layer" equation for a largerange of the "Reynolds number", R. Oscillations

that appear in the numerical solution when using a standard central finite-differencing, are

eliminated (or dramatically reduced) when the bounded-error algorithm is used.

Section (4.2) considers steady-state solution to a two dimensional scalar model to the

boundary layer equations,

1
R>>I, b<0,

both for rectangular and trapezoidal domains. Again, the bounded-error algorithm out-

performs the standard scheme in ways described therein.

Section (4.3) presents a time dependent example, modeling a boundary-layer being ex-

cited sinosoidially,

1

ut-k au_ + buy = _u_ + absin[k(x -at)].

Here, aside from the usual performance criteria, such as error-norms and quality of the

velocity profiles, we see that the error-bounded algorithm also has a significantly smaller

phase error.



2 The Scalar One Dimensional Case

Consider the scalar advection-diffusion problem

Ou Ou 1 c92u

0-7= ab7 + _&:--_+/(x,t); rL < x _<I_R, t >_0,

u(x,0) = uo(_),

u(rL, t) = gL(t),

u(rR, t)=gR(t),

and f(x,t) E C2.

Let us discritize (2.1) spatially on the following uniform grid:

a>0, (2.1a)

(2.1b)

(2.1c)

• I I I I I I I

x_ x2 x3 xi._ x., x.,,,, x_.2 xN.1 xN

Figure 1: One dimensional grid.

I I '

Note that the boundary points, x = FL and x = FR, do not necessarily coincide with xl

and XN. Set xj+l - xj = h, 1 <_ j <_ N - 1; xl - FL = 7Lh, 0 _< "/L < 1; FR - xy = _/Rh,

0 _< ")'R___1.

*The results for the case a < 0 are found by an analysis anologus to the one presented in this section,
and are presented in Appendix I.



The projection unto the above grid of the exact solution u(x,t) to (2.1), is uj(t) =

_-- I uu(xj,t) A u(t). Let /) be a matrix representing au_ + n _::, at internal points without

specifying yet how it is being constructed. Then we may write

_u(t)d = [/)u(t) + B + T] + f(t), (2.2)

where T is the truncation error due to the numerical differentiation, and f(t) = f(xj,t),

1 < j < N. The boundary vector B has entries whose values depend on gL, gR, VL, VR in

such a way that /)u + B represents au_ + -_u_ everywhere to the desired accuracy. The

standard way of finding a numerical approximate solution to (2.1) is to omit T from (2.2)

and solve

_-_v(t)d = Dv(t) + B + f(t), (2.3)

where v(t) is the numerical approximation to the projection u(t). Subtracting (2.3) from

(2.2) one gets an equation for the solution error, g(t) = u(t) - v(t),

dg__ bg+ T. (2.4)
dt

Our requirement for temporal stability is that ]] g II, the L2 norm of g, be bounded by

a "constant" proportional to h" (m being the spatial order of accuracy). Note that this

definition is more severe than either the G.K.S. stability criterion [3], or the definition in [1].

It can be shown that if D is constructed in a standard manner, i.e., away from the

boundaries the numerical second derivative is symmetric and the numerical first derivative

is antisymmetric, (and near the boundaries one uses "non-symmetric" differentiation), then
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there are ranges of 7n and 7L for which /) is not negative definite. Since in the multi-

dimensional case one may encounter all values of 0 _< 7L, 7n _< 1, this is unacceptable.

The rest of this section is devoted to the construction of a scheme of 2na order spatial

accuracy, which is temporally stable for 7L, 7R. The basic idea is to follow the procedure used

in [2]. The present case is more complicated due to the difficulty in treating the advection

term.

Note first that the solution projection uj(t) satisfies, besides (2.2), the following differ-

ential equation:

du

d---t-= Du + T_ + f(t), (2.5)

where now D is indeed a differentiation matrix, that does not use the boundary values and

therefore T_ # T but it too is a truncation error due to differentiation.

Next let the semi-discrete problem for v(t) be, instead of (2.3),

dv

d---t-= [Dv - Tr(ALv -- gL) -- TR(ARv -- gn)] + f(t), (2.6)

where gL = (1,...,1)T9L(t); gR = (1,..., 1)T9n(t), are vectors created from the left and

right boundary values as shown. The matrices AL and An are defined by the relations:

Aru = gz -- TL, Anu = gn - TR, (2.7)

i.e., each row in AL(An) is composed of the coefficients extrapolating u to its boundary value

gL(gn), at FL(FR) to within the desired order of accuracy. (The error is then TL(TR) ).

The diagonal matrices TL and 7R are given by

_-r = diag (7-L1, *L2,. . . , TLN); rn = diag (rn_, rn2,.. ., TnN). (2.8)



Subtracting (2.6) from (2.5) we get

dg

-_ = [Dg- "rLALg-- _nAng+ T1],

where

T1 = Te + 7"LTL + TRTR.

Taking the scalar product of _' with (2.9) one gets:

= (K,(D--TLAL--TRAR)_+(K, T1)

= (_', M_ + (_*,T1).

We notice that (_', Me-')is (g,(M + MT)e-')/2, where

M = D - 7LAL -- ThAn.

If (M + M T) can be made negative definite then

(g,(M + MT)e-')/2 <_ --Co II gll 2, (co > oJ.

Equation (2.10) then becomes

ld

2dt II _'112-< -Co ]1 gl[ 2 +(g, T1)

and using Schwartz's inequality we get after dividing by II g II

d

d-_IIgll< -co II_11+ IIT_ II

(2.9)

(2.10)

(2.11)

(2.12)



and therefore (using the fact that v(0)-- u(0))

[[ _.[[_<[[ T1 [[M (1 -- e -_°t) (2.13)
Co

wherethe "constane'IIT1 II.= ma× II II"
O<_-<t

If we indeed succeed in constructing M such that M + M T is negative definite, with

Co > 0 independent of the size of the matrix M as it increases, then it follows from (2.13)

that the norm of the error will be bounded for all t by a constant which is O(h TM) where rn

is the spatial accuracy of the finite difference scheme (2.6). The numerical solution is then

temporally stable.

1
It can be shown that as _ ---+0, so does Co. When Co = 0, the differential inequality is

d

d-t I[ _'[[-< ][ T, ][ (2.14)

leading to

][ _*[[ _< ]] T1 [[/t, (2.15)

i.e., a linear growth in time, a result typical of hyperbolic systems. This result can also be

obtained formally from (2.13) by letting Co --+ 0 for any fixed t.

The rest of this section is devoted to the task of constructing M in the case of m = 2,

i.e., a second order accurate finite difference algorithm. We shall deal separately with the

hyperbolic and parabolic parts of the R.H.S. of (2.11)

Let

1 M 1
M = -_ p "-_aMH = _(Dp - 7LpALp -- rR_,ARp) + a(DH -- 7"LHALH -- 7RnAR,). (2.16)
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The parabolic terms are given by:

1 -2

1 -2

0 1

0 0
1

DR -- -_

1

1

-2

0

0

1

1 -2 1

".. ".•

1 -2

1

1

-2

1

1

0 0

1 0

-2 1

-2 1

rL_,= diag [rL(_e),0,.. • 0] = diag (2 + 7L)(1+ 7L), 0,... ,0 ;

(2.17)

(2.18)

5 + [= T (P)] diag 0, 0,... •
The diag 0,0,..., nN] = '(2+7n)(1 +Tn) '

(2.19)

AL P '-

1(2+ _'L)(a +'_L) --'yL(2 +TL) _('_L + _'i) 0 ...

: • . .

(2+TL)(l+TL) --TL(2+TL) 7(7L+'7_) 0 ...

0

• o

0

(2.20)

ARp =

0 ... 0 _(7n+7_) -"/n(2+Tn) (2+Ta)(1+3'n)

: : : : :

1 10 ... 0 _(7n+7_) -Tn(2+")'n) (2+Tn)(l+7n)

The hyperbolic terms are given by:

(2.21)



-2
-1

2
0

-I
1
0 1

• •. " °°

-l

°•°

0

-I

1 0

0 1

-2 2

+

Cl

C2

C3

•°.

CN-2

CN-I

CN

-1

0

1

2

-I

-2

• - •

-I

2 -I

0 2 -I

• •. "°. "°o "..

1 -2 0 2

1 -2 1

1 -2

-1

0

1

where

+ 2h_

-1

-1

-1

• •o

,

--I I

0 -I I

*Oo "., ".o

I -I 0

I

• .°

-I I

-I -I 1

1 -I 0

1

ck -- N - 1 [(CN -- cl)k + (Ncl -- cy)],

(2.22)

(2.23)

and

1

---- _(C 1 -- ON). (2.24)

For a > 0 in (2.1a), the left boundary is, for the hyperbolic part, an "outflow" boundary

on which we do not prescribe a "hyperbolic boundary condition", therefore, in this case

7"LH= 0. When a < 0, then 7RH = 0 - see the Appendix for details•
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Here, with a > 0,

1 r(H) r(H)]
rl{,----_-_diag [0,0,..., RN__, n_ J

(2.25)

and
0

0
AnH = 0

0 --7n 1 + 7R

--7n 1 + 7R

Next we shall show that the parabolic part of M is negative definite.

(2.26)

The symmetric part

of Mp,

Mp- 1
2h 2

-_(Mp -t- MT), is found using equations (2.17) to (2.21), to be

-2
37L -- 1 2 --7L

_L -1- 1 2 -I-0'L

37L -- 1

"TL+l
--4 2 0

2 -- "/L

2 -]-")'L

2 -4 2

2 -4 2

2 -4 2

0 2 -4 2

2 --4

2 - 7n 3_n --1

2 + 7n 7n + 1

2 -- 7R

7n+ 1

-2

(2.27)
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We now decompose/l:/p as follows:

C_

-4 2

2 -4

2

2

--4 2

2

°°o

-4 2

2 --4

2

2

-4

+(l-a)

00 0

00 0

00 -2

2

2

-4

• ° •

2

°- •

2

0

°.o

-4

2

20

-200

000

000

+

3"_L-- I 2a

")_L÷1

1 - "/L

2 +'TL

0

3q% -- 1 2a
7L+ 1

-4(1 -a)

2(1 -a)

2--7L

2+7L

2(1 -a)

-2(1 -a)

0

0

-2(1 -a) 2(1 -a)

2(1 -a) -4(1 -a)

2 - fin 37n - 1

2 + 7n 7R + 1
2a

0

2 --"TR

2+'7R

37a - 1
2a

7n+ 1
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We look for 1 > a > 0 such that the second and third matrices in (2.28) are non-positive

definite. The first matrix in (2.28) is already negative definite by the argument leading to

eq. (2.60), in [2]. By the same argument it immediately follows that its largest eigenvalue is

smaller than -aTr 2. For 0 < a < 1, the second matrix in (2.28) is non-p'ositive definite, see

eq. (2.63) &: (2.64) in [2]. The third matrix in (2.28) has two square 3 × 3 corners which are

negative for 0 < a < .275. This completes the proof that/l_/p is indeed negative definite.

I(MH -q- MTH) is non-positive definite. UsingNext we would like to show that /lT/H =

equations (2.22)-(2.26) we have

-4-2cl 1+20 0

1 + 2cl -2c1 0

0 0 0

0

o 2c_+ 27R_"_2,

0

- 1- 2c_- (1+ _R)_(#-)I+ _")

-1 -- 2CN -- (1 + 3,n)r(H_) 1 + ?Rw_(.H) 4 + 2cN - 2(1 + 7R)_-(Nm

We now write ]l_/H as the sum of three "corner-matrices",

= _[r_l + r_ + mH3],

where

(2.29)

(2.30)

12



mill

1 ÷ 2Cl

0
--2C 1

0

...

0

m/-/2 =

0

0

0

-1 --(1 ÷ _R) w(H-)I ÷ _R T(H)

mH3 = c N

0

0

0

-1 - (1 + _R)T (H) + _R_'(NH)

4 -- 2(1 + _R)T (H)

2 -2

--2 2

Clearly mH3 is N.P.D (non-positive definite) for VC N <__O. Also, mill is N.P.D for C 1 > 1/4.

A simple computation shows that mH2 is N.P.D if _'g-1 and Tg satisfy

(m 2 + 5 (5 > o) (2.32)
3N -- 1 + 7R'

T(NH_) = 1 -- 7n(1 -- 5) (2.33)
(1 ÷ 7R) 2

Thus we have proved that MH is indeed non-positive definite, and therefore 1_ = _Mp+aMH

is negative definite for V_, a > O, with its eigenvalues bounded away below zero by -arc2/R,

0 < a < •275.

!3



3 The Scalar Two Dimensional Case

We consider an inhomogeneous advection-diffusion equation, with constant coefficients,

in a domain _. To begin with we shall assume that _ is convex and has a boundary c0_ E C2.

The convexity restriction is for the sake of simplicity in presenting the basic idea; it will be

removed later. The problem statement is:

Ou Ou b OU 02u c32u
0----[= a-_x + Oy + vl--fffix2 + V2Oy----_+ f(x,y;t);

u(x,y,0) = u0(x,y),

u(x,y,t)lo_ =u.(t).

We shall refer to the following grid representation:

t > 0, vx, v2 > 0, (3.1a)

Y
f

/-
/

/
l
.'%

j=l j=2 j=3

"-" k

/

k=M R

j=M c

-- k=3

-- k=2

k=l

X

Figure 2: Two dimensional grid.
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We have MR rows and Mc columns inside _. Each row and each column has a discretized

structure as in the 1-D case, see figure 1. Let the number of grid points in the k th row be

denoted by Rk and similarly let the number of points in the jth column be Cj. Let the

solution projection be designated by uLk(t ). By U(t) we mean, by analogy to the 1-D case,

u(t) ---- (?Al,1, U2,1_ • . . _ URI,1; Ul,2_ U2,2_ • . ., UR2,2; • . . ; Ul,MR, U2,MR, • . . _ URMR,MR)

_- (Ul, U2,---, Uu_). (3.2)

Thus, we have arranged the solution projection in vectors according to rows, starting from

the bottom of ft.

If we arrange this array by columns (instead of rows) we will have the following structure,

= (Ul,lUl,2,...,Ul,C1;U2,1,U2,2...,U2,C2;...;UMG,I,UMc,2,...,UMc,CMc)

- C) u(C) " " " ' MC]" (3.3)

Clearly

u(C)(t) = PU, (3.4)

where P is an orthogonal permutation matrix, of order g x g, g being the number of grid

points within 12.

The operator UlO:/Ox 2 + a O/Ox in (3.1a), including the boundary terms, is represented

on the k th row by Mff ), whose structure is given by (2.16) and the definition following it (see

(2.17) through (2.26)). Similarly let/143(, u) represent u202/Oy 2 + b O/Oy on the jth column.

15



With this notation, by analogy to (2.6), the two dimensional semi-discrete problem becomes

dV _ (.A4(_) + pT A4(_)p) V + G(_) + pTG(y ) + f(t),
dt

(3.5)

where V is the numerical approximation of U;

M_ _)

.A4(_) =

°

Mff )

°

MMRx)

; M (y) =

M_ _)

M(_)
A V_Z j

°

MMu)
C

(3.6)

and

: c(;)+ T(P)-- [T(P) "L (P)= [(_L_)gL1+ R1sR,),..-,_ L__ _+ % g._),...,

_.(P) _ _
/T(P) -- ._ RMR_RMR]]LMn_LMR

+ [(vi(7)gL1 + T(H)gn,), ''' , U'L_'(H)gL_ + T(H)_'RnkS k),'-" ,

r(H) T(H) _ _I
LMRgLMR + RMR_RMRJJ_

G(y) = G_ ) + G_ ) (P) _'(f)gT_) (T(P)gB, + TT: gT_),---,= [(rB, gsl + ,..., (P)

T(P) T'(P) gTMc)]BM c gBMc -F TM c

+ [(T(H)gBI_(H)_ _ (H) T(H)_T, I_TI),''',(Ti3_ gB,-}- T 3 FAT,),...,

7(H)tr(H) - + gTMc )]"( BM c _BM c TM c
(3.7)

16



The subscripts Bj ("B" for bottom) play the same role as Lk ("L" for left). The same

remark applied to subscripts Tj ("T" for top) and Rk ("R" for right).

Note that r H rrH _ 0 when a > 0(a < 0). Similarly H H 0(b 0)./_kt R_ ] = _-/_,(73;) = 0 when b > <

Designating the two dimensional array off errors, eij, by E = U - V, the equation for E

becomes

dE = [.M(_) + pT.M(_)p]E + T, (3.8)
dt

where T represents the sum of the various truncation errors.

The time rate of change of ]l E II2 is given by

ld

2dr ]] E ][2= (E, (3d(_)+ pT.M(y)p)E)+ (E, T). (3.9)

By the same argument that follow eq. (3.15) in [2] it is clear that the norm of the error,

]l E]l, is bounded by a constant, where the "constant" [IT ]IM= max II W(_-)II.
0<:_'<t

In [2], it was shown that if the domain f_ is not convex or simply connected, the above

results still hold. This is also true here.

1
Note that if _ = _, = 0 (or ul = u2 = 0 in the 2-D case) then the differentiation operator,

M, becomes non-positive definite. In that case, it follows imnwdiately from (3.9) that the

bound on the error-norm is not a "constant" but grows linearise in time.
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4 Numerical Examples

4.1 One Dimensional Case

Here we consider the problem

Ou 1

0-7+ u_ = -_u_, t_>0, O_<x_<l, (4.1.1)

_(0, t) = 1,

u(1,t) = 0,

u(z,o) = _0(x).

The steady state solution to (4.1.1) is:

1 - e -R(1-x)

u(x) = 1 - e -n (4.1.2)

Note that R (= 1/u) plays the role of Reynolds number in this model for a "linear shock

layer".

Eq. (4.1.1) was solved numerically by two methods. In one (referred to as "standard")

we use central differencing for the spatial differentiation, and 4th-order Runge-Kutta in time.

In this "standard" case, there is no need for special treatment at the boundaries.

The numerical approximation v, in this "standard" case, satisfies the following finite

difference equation:

1 1

-_(vj+, - vj-a) - -_(vj+l - 2vj + vj-1) = O, (0 < j < n) (4.1.3)

18



with v0 = 1 and VN = O. The solution to (4.1.3) is:

tcj _ _2N-j

vj - 1 -- t_ 2N ' g --

2+hR

2-hR (4.1.4)

Notice, that if the "cell Reynolds number," Re = hR > 2, then _ < 0 and the numerical

solution, vj, will be oscillatory. If Rc < 2 then we resolve the "shock layer" (or "boundary

layer") and the solution will be smooth.

Numerical steady-state solutions of (4.1.1) using the "standard scheme", and using the

"bounded-error" algorithm, (2,6), described above are shown in figures 3-8 for Ax = 1/100

and various values of R. Both schemes were advanced to steady state using 4th-order Runge-

Kutta. It is clear that when Rc < 2, both schemes give good results. For Re = 10

(R = 1000) both show oscillations, but the new algorithm approximates the exact solution

much better. When Re = 103 (R = 10s), the "standard" numerical solution is useless while

the "bounded-error" scheme gives excellent results; in fact far better than for Rc = 10.

2

1.75 Standard

1.5 Exact

1.25

1

0.75

0.5

0.25

0
0.2 0.4 0.6 0.8

Figure 3: Standard scheme, Rc = 2.

x

1

u

2

1.75

1.5

1.25

1

0.75

0.5

0.25

0

SAT

Exact

0.2 0.4 0.6 0.8

Figure 4: SAT, Rc = 2.

x

1
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u

2

1.75

1.5

1.25

1

0.75

0.5

0.25

0

Standard --

Exact

0.2 0.4 0.6 0.8

Figure 5: Standard scheme, Rc = 10.

u

2

1.75

1.5

1.25

1

0.75

0.5

0.25

x 0

SAT

Exact

0.2 0.4 0.6 0.8

Figure 6: SAT, Rc = 10.

7

6

5

4

3

2

1

0

Figure
1000.

Standard --

Exact

0.2 0.4 0.6 0.8

7: Standard scheme, Rc =

u

7

6

5

4

3

2

1

x 0
1

SAT

Exact

0.2 0.4 0.6 0.8

Figure 8: SAT, Rc = 1000.

t x

1

4.2 A Steady State Two Dimensional Case

Here we shall consider a steady-state problem, which models, in a way, the 2-D boundary

layer equations. The formulation is as follows: (The time derivative is left in the equation,

since the approach to steady state will be via temporal advance.)

1

ut+au,+bu,=-_u_; t>_O;O<x< 1;0_<y< 1, (4.2.1)

u(O, y, t) - 1 - ebny 1 . ._
1 - ebR + ]-_0ne 2 sin _ry, (4.2.1a)
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u(x,O,t)=O, (4.2.1b)

u(x,l,t) = 1. (4.2.1c)

We also take a = 1, and in order to have a growing "boundary layer" on y = 0, we must set

b<0.

The analytic solution of this problem is:

u(x,y)- _ + bReW exp 4 _r2 Ra sin_ry. (4.2.2)

Figure 9 is a 3-D rendition of u(x,y) for R = 90,000. (This 3-D plot looks the same to

the eye for various -1 < b < -4/x/_ = -4/300.) Figure 10 is a plot of the "velocity

profile" inside the "boundary-layer" (0 < y < .04) at x = .1, .25,.9 and b = -4/V_. The

"bumps" at x = .1 and x = .25 may be considered as "emulating" results of fluid mechanics

computation for an incompressible flow near the entrance to a channel, see e.g. [4].

The numerical solution of (4.2.1) using a standard central differencing scheme depends

strongly on the value of b (at a given R). Figures 11 and 12 show the 3-D plot of vj,k with

b = -1 and b = -4/v/R = -4/300. Figs. 13 and 14 show the profiles at x = .1 and x = .9

4 respectively. It should be emphasized that the "peak" in figure 11 hasfor b = -1 and -g56,

nothing to do with the "bumps" in the exact solution (see figure 10). The "peak" occurs

way outside the boundary layer, and also the amplitude behavior with the x-coordinate is

counter to that of figure 10. The "peak" is due to a purely numerical oscillation.

The same series of plots, but as computed by the new algorithm, is shown in figures

15-18.
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It should be noted (see table 1) that the "bounded-error" algorithm converges to steady

state (residual L2 norm < 10 -13) an order of magnitude faster than the standard scheme

when using the same At, while cpu-time/iteration is about the same. The standard scheme

may be run at bigger At ( by about a factor of 2) while the SAT algorithm was already at

its maximum CFL number. If we let each scheme run at its own maximum At then the run

time are about equal, but the difference in errors remains.

'time' to L2 L1 norm L2 norm t_ norm max error

'steady-state' residual of the error of the error of the error location

b= -1

SAT 21.09 9.911e-14 8.805e-05 1.076e-04 3. l 0_c-04 45, 46

Standard 417 9.987e-14 0.485139 0.674233 - 1.00t'_'3 10, 4

b -- -4/300

SAT 52.64 9.943e-14 1.665e-04 1.142e-03 021220 50, 2

Standard 416 9.967e-14 3.362e-03 2.447e-02 -0.2_64 50, 2

Table 1: Rectangular geometry results.

We also ran the same equations for a non-strictly rectangular geometry, where the upper

boundary instead of being y -- 1 is y = 1 - (tan _)x, where 8 is the angle which the upper
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boundary makeswith the x-axis, see figure 19.
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0..5

y=o

Y2

[ , I , I i , ,
x=O 0.5

Figure 19: The trapezoid geometry.

X

For many _9's the results of the performance of the two schemes are unaffected by the

change. However, there are some _'s for which the standard scheme converges to steady

state much slower than before at its own maximum allowed At, while the performance of

the bounded-error algorithm remains the same as before. For example, see table 2, for the

case of _ = 3.9 °. As in [2], the point is that for non-rectangular geometry the distance that

a boundary is away from a computational mode, 7h, might become extremely small and

this causes the deterioration in the performance of the standard scheme. Here it is reflected

in the fact that the standard scheme cannot "support" the larger allowed At that can be

achieved for the case 8 = 0. For complex geometries it is very difficult to predict a-priori

what range the values of 7 will take. The SAT methods (the bounded error algorithm) is

insensitive to the variations in 7 caused by the geometry of the domain.
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b -- --4/300

SAT

Standard

4.3

'time' to L2 L1 norm L2 norm Loo norm max error

'steady-state' residual of the error of the error of the error location

52.56 9.984e-14 1.707e-04 1.156e-03 0.01220 50, 2

401.11 9.995e-14 3.448e-03 2.479e-02 -0.2864 50, 2

Table 2: Trapezoid geometry results.

A 2-D time dependent example

To check on the temporal "performance" of the bounded-error scheme, we considered the

following problem:

1

ut+au_+buy=-_u_u+crbsin[k(x-at)]; t>_0, 0<x< 1, 0<y_< 1, (4.3.1a)

u(x,y, O) - 11--e bRebny + --_ebR____e_(b_+_2)__ sin _ry + yGsinkx, (4.3.1b)

1 - ebnu bR

u(O,y,t) - l _eb n +-_e 2 sinTcy- yasinkat, (4.3.1c)

u(x,O,t)=O, (4.3.1d)

u(x,l,t) = 1 + crsin[k(x-at)]. (4.3.1e)

The exact solution of (4.3.1) is:

u(x,y,t) - 1 - e bnu bR _ ,b2n2+_2_
l_eb n +--_e_ e-,--x-- '-_sin_ry+yasin[k(x-at)]. (4.3.2)

Again we take a = 1, R = 90,000, b = -1, and -:7_'4 The parameters cr and k have

certain constraints. If we want u > 0, we must take cr < 1. The number of computational

nodes, N, puts a lower bound of 2rN on the wave-length, l/k, i.e., 1 < k < 2_rN. In the
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actual computationsweused_r= 1/2 and k = 30. All the plots for this time dependent case

are shown for t = 10. Figure 20 shows a 3-D plot of u(x, Y, 10). As in the steady-state case,

the plot looks the same to the eye for various -1 < b < -4/v/-/_ = -4/300. Figures 21, 22

show the 3-D plots of vj,k for the standard and bounded-error schemes respectively. Figure

23, shows a z-profile of v at Y = .2, for both schemes and the exact profile, for b = 1. Figure

24, gives the same profiles at Y = .8. These plots bring out the differences in the phase errors

of the numerical algorithms. Figures 25-28, repeat the same information as given in figure

21-24, but for b = -4v/-R = -4/300. The efficacy of the bounded-error algorithm is quite

evident - even when b = -4/v/-R, where the norm-errors away from the boundary layer are

not dissimilar, the phase error of the right running waves is quite a bit smaller in the case

of the proposed present scheme.

2 2

1.5 1.5

u u 1

o o

.... 2o__. 11110 2o
- ely

Figure 20: Exact solution. Figure 21: Standard scheme, b = -1.
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5 Conclusions

(i) A second order method has been developed which renders spatial second derivative

finite difference operators negative definite. This is not surprising, since negative defi-

niteness was achieved for 4 th order parabolic operators in [2].

(ii) A second order method has been developed which renders spatial first derivative finite

difference operators non-positive definite. For the case when boundary points do not

coincide with grid nodes (V _ 1), this is a new result.

(iii) The results (i) and (ii) allow us to construct a solution operator for the advection

diffusion problem (and, of course, the diffusion equation) which is negative definite,

thereby ensuring asymptotic temporal stability.

(iv) The construction of these operators allows an immediate simple generalization to multi-

dimensional problems, on complex domains which are covered by rectangular meshes.

The proofs of the boundedness of the error-norms carry over rigorously to the (linear)

multi-dimensional cases.

(v) Numerous numerical examples demonstrate the efficacy of this methodology.
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Appendix I

As in the a > 0 case the hyperbolic terms are given by:

where

and

C1

C2

+

C3

°°

CN-2

0

1

1

+ 2h_

-2 2

-1 0

-1

aN-1

-1

-1

-1

°.

CN

1

-1

0

°..

1

1

0

°*o

1

°o. °°°

-1 0

-1

-1 2

0 -1

1 -2

"°o

1

-1 1

°. °Oo ".°

-t 0 -1

1 -1

1

1 0

0 1

-2 2

-1

2 -1

0 2

"o. "o

1 -2

1

1

-1 1

-1 0

1

ck - N - 1 [(CN -- cl)k + (Ncl -- CN)],

1

= - (cl - oN).

-1

°Oo ° o°

0 2 -1

-2 1 0

1 -2 1

(A.1)

(A.2)

(A.3)

31



For a < 0 in (2.1a), the right boundary is, for the hyperbolic part, an "outflow" boundary

on which we do not prescribe a "hyperbolic boundary condition", therefore, in this case

TRH = O,

and

1

"rLn = _-_diag tfT(H)L,, T(H)L2, O, ..., 0,0], (A.4)

ALH _--

0
0

0 0

(A.5)

Next we would like to show that 37/H 1= _(MH + M T) is non-negative definite,then af/IH

is non-positive definite• Using equations (A.1)-(A.5) we have

1

-4 - 2c, - 2(1 + "yr)7_ H) 1 + 2cl -- (1 + _/L)T(2H) + "/LT[ H)

1 + 2c,-(1 +"/L)T (H) +'_LT_ H) -2ca + 27LT(2H)

0 0

0

0

0

0

°..

2CN

-1 - 2CN

0

We now write ]IT/H as. the sum of three corner-matrices ,

1

M. = _[m. 1 + -_H_ + rn.3],

(A.6)

(A.7)
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where

mill -_ ¢1

0

0
0

0

rr_ H 2

-4 - 2(1 + '7L)r(1 H) 1 -- (1 + 7L)T (H) -4-"TLT}H) 0

1 -- (1 -4-"TL)T}H) -4-"7Lr} H) +23'r (H) 0

0 0 0

0

0

Oo

0

mH3 -w- C N

0

0

o
o

2CN -- 1 -- 2CN

--I -- 2CN 4 --]-2CN

Clearly mill is N.N.D (non-negative definite) for Vcl < 0. Also, mHa

CN > --1/4. A simple computation shows that mH2 is N.N.D if T1 and T2 satisfy

_H) _ 2 + 6 (_> o),
1 +%

(A.8)

is N.N.D for

(A.9)

r2(H) = 1--'yL(1--5) (A.10)
(1 + %)2

Thus we have proved that I_IH is indeed non-negative definite, and therefore _/I = _f/Ip+af/iH

is negative definite for V_ > O, with its eigenvalues bounded away from zero by -c_rc2/R,

0 < a < .275, as in the a > 0 case treated in the text.
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